عنوان : بررسی عملکرد سیستم های تبرید جذبی با 3 سطح و 4 سطح دمایی متفاوت
استاد راهنما : دکتر آرمن آدامیان
استاد مشاور : دکتر محمد افتخاری یزدی
زمستان 1393
برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود
(در فایل دانلودی نام نویسنده موجود است)
تکه هایی از متن پایان نامه به عنوان نمونه :
(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
فهرست مطالب
عنوان صفحه
فصل اوّل: مقدّمه
1- مقدّمه 1
1-1- سیستم سرمایش جذبی با مبرد آب و ماده جاذب لیتیم بروماید 5
1-1-1- سیکل تک اثره 7
1-1-2- سیکل دو اثره 8
1-2- سیستم سرمایش جذبی با مبرد آمونیاک و ماده جاذب آب 12
فصل دوّم:مدل ترمودینامیکی سیستم 21
2-1- سیستم های تبرید با 3 منبع حرارتی برگشت ناپذیر 21
2-2- سیستم های تبرید با 4 منبع حرارتی برگشت ناپذیر 25
فصل سوّم:الگوریتم های تکاملی و ژنتیکی و کاربرد آن در بهینه سازی چندهدفه…………………………………………………..35
3-1- مقدّمه…………………………………………………………………………………………………………………………………………35
3-2- معرفی الگوریتم های ژنتیکی 41
3-2-1- اصطلاحات الگوریتم ژنتیک 41
3-2-2-نمایش کروموزومی 45
3-2-3- جمعیت آغازین 48
3-2-4-تابع برازندگی و تخصیص شایستگی………………………………………………………………………………………………….50
3-2-5- انتخاب 52
3-2-5 -1-فضای انتخاب 52
3-2-5-2- فشار انتخاب 53
3-2-5-3- روش انتخاب 53
3-2-6- عملگرهای ژنتیکی 56
3-3- تعاریف و مفاهیم پایه در بهینه سازی چند هدفه 63
3-3-1- مساله بهینه سازی چند هدفه 64
3-3-2- فضای شدنی 66
3-3-3- روابط بین بردارهای هدف 67
3-3-4 – غلبه پارتو 68
3-3-5- بهینگی پارتو 70
3-3-6- مجموعه و جبهه بهینه پارتو و نقطه ایده آل 71
3-3-7- تعادل 72
3-4- بهینه سازی چند هدفه با استفاده از الگوریتم ژنتیک …………………………………………………………………………73
3-4 -1- مقایسه روشها و الگوریتم های ارائه شده 76
3-4-2- الگوریتم ژنتیک مرتب سازی پاسخهای نامغلوب بهبود یافته NSGA II 78
فصل چهارم: نتایج بهینه سازی
4-1- سناریوی اوّل 88
4-2- سناریوی دوّم 92
4-3- سناریوی سوّم 99
فصل پنجم: نتیجه گیری و پیشنهادات 106
5-1- نتیجه گیری و پیشنهادات 106
مراجع…………………………………………………………………………………………………………………………………………………………….107
فهرست جداول
عنوان صفحه
جدول 3-1- تشابه الگوریتم های ژنتیکی و پدیده های طبیعی 45
جدول 3-2- مقایسه مقادیر توابع هدف و برازندگی نسبی 51
جدول 4-1- نتایج بهینه انتخاب شده با LINMAP ، FUZZY و
TOPSIS برای بهینه سازی 91
جدول 4-2- نتایج آنالیز خطا برای بهینه سازی سناریوی 1 92
جدول 4-3- نتایج بهینه انتخاب شده با LINMAP ، FUZZY و TOPSIS برای سناریوی 2 98
جدول 4-4- نتایج آنالیز برای بهینه سازی سناریوی 2 99
جدول 4-5- نتایج بهینه انتخاب شده با LINMAP ، FUZZY و TOPSIS برای سناریوی 4 104
جدول 4-6- نتایج آنالیز برای بهینه سازی سناریوی 4 105
فهرست اشکال
عنوان صفحه
شکل 1-1- سیکل جذبی تک اثره 8
شکل 1-2- سیکل جذبی دو اثره 9
شکل 1-3- چرخه ساده سیستم جذبی آمونیاکی 18
شکل 2-1- دیاگرام شماتیک سیستم تبرید جذبی 22
شکل 2-2- مدل چرخه برگشت ناپذیر یک سیستم تبرید جذبی 22
شکل 2-3- شماتیک کلی سیستم تبرید با 4 سطح دمایی 26
شکل 2-4- سیستم معادل ارائه شده 27
شکل 2-5-تغییرات اکسرژی و ضریب عملکرد سیستم بر حسب نسبت سطح انتقال حرارت……………………..32
شکل 2-6- تغییرات اکسرژی و ضریب عملکرد سیستم بر حسب نسبت سطح انتقال حرارت…………………………….32
شکل 2-7- تغییرات اکسرژی و ضریب عملکرد سیستم بر حسب نسبت دمای سیال …………..……………………33
شکل 2-8- تغییرات اکسرژی و ضریب عملکرد سیستم بر حسب نسبت دمای سیال…………………………33
شکل3-1- صورت عمومی الگوریتم ژنتیک…………………………………………………………………………………………..39
شکل 3-2- نمایش الل ها در کروموزوم های رشته ای………………………………………………………………………..41
شکل 3-3-دو نمایش از ژن های موجود دردوکروموزوم………………………………………………………………………42
شکل 3-4- نمایش فضاهای ژئوتایپ و فنوتایپ 43
شکل 3-5- کرموزوم 25 بیتی دو متغیره 46
شکل 3-6- کرموزوم دو متغیره با نمایش حقیقی 47
شکل 3-7- جمعیت آغازین 49
شکل 3-8- گزینش 4 عضو از جمعیت جدول 4-1 با روش چرخ رولت 54
شکل 3-9- گزینش مسابقه ای بیشینه سازی با Tour-size برابر3 55
شکل 3-10- نمایش فضاهای ژئوتایپ و فنوتایپ 58
شکل 3-11- گونه هایی از جهش 6
شکل 3-12- مساله بهینه سازی n هدفه و m متغیره 64
شکل 3-13- روابط میان پاسخ ها 68
شکل 3-14- بهینگی پارتو در فضای هدف 70
شکل 3-15-جبهه پارتو و نقاط ایده آل در فضای هدف 71
شکل 3-16- تعادل قوی و ضعیف بین اهداف 72
شکل 3-17- رتبه بندی پاسخ های نامغلوب 74
شکل 3-18- دو روش متمایز رتبه بندی و هدایت پاسخ ها 75
شکل 3-19- اثر حفظ پخش پاسخ ها در طول جبهه پارتو 75
شکل 3-20- تخمین چگالی پاسخ ها با استفاده از اندیس فاصله 78
شکل 3-21- نمودار گردش کار الگوریتم NSGA 80
شکل 3-22- روند انتخاب و تکامل نسل ها در NSGAII ……………………………………………………………………87
شکل 4-1- جبهه بهینه پرتو برای ضریب عملکرد حرارتی-زیست محیطی…………………………………………..87
شکل 4-2- توزیع پراکندگی برای متغیر 90
شکل 4-3- توزیع پراکندگی برای متغیر . 90
شکل 4-4- توزیع پراکندگی برای متغیر . 91
شکل 4-5- جبهه پرتو بهینه بدست آمده برای و 94
شکل 4-6- پراکندگی متغیر نسبت سطح انتقال حرارت در بخش پمپ حرارتی 95
شکل 4-7- پراکندگی متغیر نسبت سطح انتقال حرارت در بخش یخچال 95
شکل 4-8-پراکندگی متغیر نسبت دمای سیال عامل دربخش پمپ حرارتی 96
شکل 4-9- پراکندگی متغیر نسبت دمای سیال عامل در بخش یخچال 97
شکل 4-10- جبهه پرتو جواب های بهینه به دست آمده از بهینه سازی چند هدفه 101
شکل 4-11- پراکندگی متغیر نسبت سطح انتقال حرارت در بخش پمپ حرارتی .. 102
شکل 4-12- پراکندگی متغیر نسبت سطح انتقال حرارت دربخش یخچال 103
شکل 4-13- پراکندگی متغیر نسبت دمای سیال عامل در پمپ حرارتی 103
شکل 4-14- پراکندگی متغیر نسبت دمای سیال عامل دربخش یخچال 104
فهرست علائم و اختصارات
M2 A
ضریب عملکرد COP
ضریب عملکرد زیست محیطی ECOP
پارامتر برگشت ناپذیر داخلی I
ضریب حرارتی K
نرخ انتقال حرارت
بار سرمایش ویژه r
نرخ تولید آنتروپی ویژه s
دما T
ضریب انتقال حرارت U
نرخ تولید آنتروپی
ضریب نشت حرارت
ضریب عملکرد برای سیکل تبرید جذبی برگشت پذیر
سیال کاری در ژنراتور 1
سیال کاری در اواپراتور 2
سیال کاری در جذب کننده و کندانسور 3
جذب کننده A
کندانسورC
اواپراتور E
شرایط محیطی env
ژنراتور G
نشت حرارت L
ماکزیممmax
جذب کننده و کندانسور O
چکیده
در این پژوهش بررسی بر روی سیستم های تبرید جذبی غیرقابل برگشت براساس برگشت ناپذیری داخلی و خارجی با توجه به ظرفیت های حرارتی محدود مخازن خارجی ارائه شده است. برای بهینه سازی سیستم سه سناریو تعریف شد که در این سناریوها توابع هدفی نظیر ضریب عملکرد (COP) ، تابع محیط زیست (E) و معیار ترمواکونومیک ( ) و نرخ تولید آنتروپی ویژه در فرآیند بهینه سازی به طور همزمان درگیر شده اند .سناریو اوّل که شامل دو تابع هدف ، به حداکثر رساندن ضریب عملکرد زیست محیطی ECOP و به حداقل رساندن نرخ تولید آنتروپی ویژه به طور همزمان می باشد. الگوریتم های تکاملی چند هدفه (MOEAs ) بر مبنای الگوریتم NSGA-II استفاده شده است در حالی که دمای سیال کاری در ژنراتور ( ) ، دمای سیال کاری در اواپراتور ( ) و دمای سیال کاری در کندانسور و دمای سیال کاری در جذب کننده ( ) به عنوان متغیرهای تصمیم گیری در نظر گرفته شده است .
سناریوی دوّم وسوّم شامل توابع هدف ضریب عملکرد ([1]COP) ، تابع محیط زیست (E) و معیار ترمواکونومیک (F ) می باشد که درآن ها این توابع به طور همزمان بهینه شده اند و نتایج بدست آمده با تحقیقات گذشته مقایسه گردید. الگوریتم های تکاملی چند هدفه ([2]MOEAs ) بر مبنای الگوریتم
NSGA[3]-II استفاده شده است در حالی که نرخ دمای سیال کاری ( , ) و نرخ سطح انتقال حرارت ( , ) به عنوان متغیرهای تصمیم گیری در نظر گرفته شده است . مرز مطلوب پارتو انجام شده است و یک راه حل بهینه نهایی با استفاده از روش تصمیم گیری های مختلف مثل روش LINMAP و روش TOPSIS و روش Fuzzy انتخاب شد
کلمات کلیدی: ضریب عملکرد ، روش NSGA-II ، ترمودینامیکی ، تبرید جذبی
مقدّمه
با توجه به این که تاسیسات یک ساختمان به عنوان قلب آن ساختمان محسوب شده و طراحی و انتخاب تجهیزات آن از اهمیت شایانی برخوردار بوده و هم چنین با توجه به اهمیت موضوع کاهش مصرف انرژی در این مقاله سعی بر آن شده تا مزایای چیلرهای جذبی نسبت به تراکمی و طرز کار آن ها جهت تهیه آب سرد جهت سرمایش ، آب گرم جهت گرمایش و هم چنین آب گرم مصرفی در راستای صرفه جویی در مصرف انرژی مورد بحث و بررسی قرار گیرد .
چیلرها از جمله تجهیزات بسیار مهم در سرمایش هستند که به طور کلی می توان آن ها را به دو دسته چیلرهای تراکمی و چیلرهای جذبی تقسیم کرد. به طور کلی چیلرهای تراکمی از انرژی الکتریکی و چیلرهای جذبی از انرژی حرارتی به عنوان منبع اصلی برای ایجاد سرمایش استفاده می کنند.
در سال های اخیر سیستم های تبرید جذبی بسیار مورد علاقه قرار گرفته اند. این سیستم ها
می توانند از انرژی حرارتی اتلافی، خورشیدی ، بیوماس[4] و انرژی گرمایی به عنوان منبع حرارتی استفاده کنند. معمولاً سیستم های جذبی براساس سیکل های لیتیم برماید/آب و آب/آمونیاک می باشند. مزیت آمونیاک به عنوان مبرد نسبت به آب این است که می تواند در دمای زیر صفر درجه سانتیگراد تبخیر شود و هم چنین دمای نقطه انجماد آمونیاک 77- درجه سانتی گراد است.بنابراین آمونیاک می تواند برای کاربردهای دما پایین استفاده شود. سیستم تبرید جذبی مزایای بسیاری نسبت به سیستم تبرید فشرده سازی بخار (تراکمی) دارد که شامل : الف) ارزش گذاری یک منبع گرم با دمای متوسط (گرمای زائد از صنایع مختلف ، انرژی خورشیدی و انرژی زمین گرمایی) که بدون آن قابل استفاده خواهد بود ، ب)کاهش مصرف منابع انرژی اولیه ؛ ج) کاهش اثرات منفی روی محیط زیست ؛ د) سادگی عملیات آن ، ر) طول عمر بالا و عدم وجود قطعات متحرک ( آرام و مطمئن ) می باشد. بنابراین سردکننده های جذبی برای مصارف صنعتی و خانگی در کل دنیا مورد توجه قرار گرفته اند. با این حال ، سیستم تبرید جذبی ضریب عملکرد کم تر از ضریب سیستم تبرید تراکمی دارد.
ادوین آندرسن[5] در کتاب «تبرید: خانگی و تجاری» در مورد زوج مبرد و جاذب چیلرهای جذبی که دارای ماده جاذب مایع هستند، 9 ویژگی مهم مبرد و جاذب را که می توانند نقش تعیین کننده در انتخاب برای استفاده در این گونه سیستم ها داشته باشند را چنین برمی شمارد :
اوّل: عدم حالت جامد – زوج مبرد و جاذب نباید در طی فعل و انفعالات و دامنه دمایی طبیعی عملیات سرمایش جذبی به حالت جامد درآیند. زیرا بروز فاز جامد منجر به کندی حرکت محلول یا حتی انسداد مسیرهای سیال می شود.
دوّم: نسبت فراریت زیاد – فراریت ماده مبرد باید خیلی بیش تر از فراریت ماده جاذب باشد تا امکان جداسازی آن ها طی عملیات تغلیظ که در ژنراتور صورت می گیرد به سهولت امکان پذیر باشد. امکان جداسازی آسان ماده مبرد از جاذب که به صورت محلول وارد ژنراتور می شوند، تاٌثیر مستقیمی بر کاهش مقدار انرژی گرمایی داشته و از هزینه های مربوط به عملیات تغلیظ می کاهد.
سوّم: میل شدید به جذب – تمایل ماده جاذب به جذب ماده مبرد با توجه به خواص هریک از آن ها در دامنه عملیاتی چیلر جذبی از مهم ترین مشخصه های یک زوج خوب محسوب می شود. چنین میلی منجر به نوعی وابستگی و پیوستگی به هنگام هم نشینی با یک دیگر می شود. از همین رو سرعت ترکیب و درهم ادغام شدن افزایش یافته و ضریب فعالیت مبرد کمتر از واحد می شود و از سوی دیگر مقدار ماده جاذب برای جذب مبرد کاهش یافته و در نتیجه از میزان انرژی گرمایی مورد نیاز کاسته می شود. هم چنین اندازه مبدل حرارتی که امکان تبادل حرارت بین محلول غلیظ ماده جاذب خروجی از ژنراتور و محلول رقیق محلول جاذب و مبرد تحت فشار پمپ را به وجود می آورد کوچک تر می شود. در عین حال تحقیقات ژاکوب[6]، آلبرایت و تاکر[7] [1-4] نشان می دهد که تمایل شدید ماده جاذب به ماده مبرد مشکل غلیظ سازی را در ژنراتور به همراه دارد، زیرا در ژنراتور انرژی گرمایی بیش تری باید صرف جداسازی این دو ماده شود، که البته با آن میل شدید به وصل، چنین عاقبتی قابل پیش بینی است.
چهارم: فشارمتوسط – فشار عملیاتی ماده مبرد و جاذب برای انجام فرایند جذب و سپس جداسازی که منجر به سرمایش می شود باید در حد متوسط باشد . زیرا نیاز به فشارهای زیاد باعث افزایش ضخامت دیواره های دستگاه و استفاده از تجهیزات و وصاله های فشار قوی می شود که این گونه موارد بر سنگینی و هزینه های آن می افزایند. از طرف دیگر نیاز به فشارهای خیلی پایین و خلأ نیز منجر به افزایش حجم دستگاه برای عملیات جذب شده و تجهیزات خاصی را برای حفظ خلأ در درون دستگاه طلب می کند.
پنجم: پایداری – مواد جاذب و مبرد باید از پایداری و ثبات شیمیایی خوبی برخوردار باشند و خواص اولیه خود را در طی سالیان متمادی حفظ کنند. پایداری شیمیایی امکان شکل گیری گازها و مواد جامد را کاهش داده و خوردگی را به حداقل می رساند.
ششم: خوردگی و فرسایش کم – مواد جاذب و مبرد به هرحال کم یا زیاد موجب خوردگی و فرسایش سطوح فلزی دستگاه می شوند و طبیعتاً در این میان موادی مناسب تر هستند که پایداری آن ها بیش تر و اثرات فرسایشی آن ها کم تر باشد. برخی اوقات برای جلوگیری از اثرات فرسایشی مواد لازم می شود تا ترکیبات شیمیایی دیگری به عنوان بازدارنده به زوج جاذب و مبرد اضافه شود.