وبلاگ

توضیح وبلاگ من

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی شیمی

 
تاریخ: 21-07-98
نویسنده: مدیر سایت

متانول مقدار سرعت کاتالیزوری برابر با 104   616/4 و ضریب نفوذ آشکار برابر با 848 /4  بدست آمد.
 
کلمات کلیدی: نانو سیلیکوآلومینوفسفات، سنتز هیدروترمال، غربال مولکولی، ولتامتری چرخه­ا­ی، پیل سوختی متانول مستقیم
فهرست مطالب
 
فصل اول – مقدمه و کلیات تحقیق

مروری کلی بر غربال مولکولی سیلیکوآلومینوفسفات.. 2زئولیت­های طبیعی………………………………….. 6
سنتز غربال­های مولکولی………………… 6
اصلاح­ غربال­های مولکولی­ سیلیکوآلومینوفسفاتی. 9
شناسایی غربال­های مولکولی سیلیکوآلومینوفسفاتی.. 11روش میکروسکوپ الکترونی………………………….. 11
روش پراش اشعه X (XRD)  …………………………… 12
روش FTIR 12
مقدمه­ای بر پیل­های سوختی……………… 12
الکترودهای اصلاح شده و فرایند الکتروکاتالیزور.. 15
انواع کاتالیزورهای مورد استفاده در الکترواکسیداسیون آندی متانول…………………………….. 18الکتروکاتالیزورهای متانول در محیط اسیدی……………….. 18
1-7-2. الکتروکاتالیزورهای متانول در محیط قلیایی 18

اندازه­گیری الکتروشیمیایی…………….. 19
هدف از پژوهش……………………….. 19
فصل دوم – ادبیات و پیشینه تحقیق

تاریخچه­ی پیل سوختی………………….. 21
مروری بر تحقیقات الکتروکاتالیزوری…….. 22
تاریخچه­ی مواد غربال­های مولکولی……….. 23زئولیت­های آلومینو سیلیکاتی و غربال­های مولکولی سیلیسی…… 23
فصل سوم – روش تحقیق

مواد اولیه و تجهیزات آزمایشگاهی………. 30مواد اولیه 30
تجهیزات آزمایشگاهی…………………………………. 32دستگاه پتانسیواستات/گالوانواستات……….. 32
سنتز و ساخت………………………… 33سنتز نانو سیلیکوآلومینوفسفات…………………. 33
ﺳﺎﺧﺖ اﻟﻜﺘﺮوﻛﺎﺗﺎﻟﻴزور……………………. 34
روش ارزیابی عملکرد الکتروکاتالیزوری…… 35مقایسه الکترود مربوطه با الکترود خمیر کربن…………. 36
فصل چهارم – محاسبات و یافته­های تحقیق

 

تعیین خصوصیات کاتالیزور­های سنتزی……… 39آنالیز XRD 39
آنالیز FESEM 40
آنالیز FTIR 42
ارزیابی عملکرد الکتروکاتالیزورها……… 44آنالیز الکتروشیمی الکترودهای اصلاح شده………………… 47
اکسیداسیون الکترولیت متانول در سطح الکترود اصلاح شده 54
ارزیابی کرنوآمپرومتری……………………… 58
بررسی عملکرد و پایداری الکترود Ni-SAPO/CPE. 63
فصل پنجم – نتیجه گیری و پیشنهادات

غربال مولکولی کریستال نانو سیلیکوآلومینوفسفات. 66
الکترود اصلاح شده با نانوسیلیکوآلومینوفسفات سنتز شده 66
پیشنهادات……………………………………………………………………………… 67
پیوست – منابع و

 

برای دانلود متن کامل پایان نامه ها اینجا کلیک کنید

ماخذ…………………….. 68
چکیده انگلیسی…………………………… 72


 
فهرست شکل‌ها
 
شکل1-1: واحدهای TO4 در غربال مولکولی­های زئولیتی و آلومینوفسفاتی…………………………….    3
شکل 1-2: ساختار اتمی شبکه­های CHA(a), MFI(b), AFI©, DON(d)…………………………….     5
شکل1-3: روش سنتز قالبی و قالب­های رایج در آن: 1. تک مولکول، 2. مولکول دوگانه دوست (دارای یک رشته‌ی آلی چربی دوست (قرمز) و یک سر آب دوست (آبی): Amphiphile))و 3. مایسل (خوشه­ای از مولکول های دوگانه-دوست: Micelle)) و 4. مواد پیچیده­تر، 5. یک ساختار کروی، 6. دسته­ای از ساختارهای کروی……………………………….     9
شکل 3-1: نمایی از نحوه­ی فعالیت پتاسیواستات…………………………………………………………….. 32
شکل 4-1: الگوی XRD غربال مولکولی نانوساختار SAPO………………………………………………. 39
شکل 4-2: الگوی XRDغربال مولکولی نانوساختار NiSAPO……………………………………………. 40
شکل 4-3: تصویر SEM غربال مولکولی نانوساختار SAPO………………………………………………. 41
شکل 4-4: تصویر SEM غربال مولکولی نانوساختار NiSAPO……………………………………………   42
شکل 4-5: آنالیز FTIR  غربال مولکولی نانو ساختار SAPO ……………………………………………..   43
شکل 4-6: آنالیز FTIR کاتالیزور  نیکل SAPO………………………………………………………………   43
شکل 4-7: ولتامتری چرخه­ای الکترود الف CPE و  ب الکترود اصلاح شده 25%SAPO/CPE  در محلولmM  10 پتاسیم فری سیانید وM 1/0  KCl با سرعت اسکنmV/S   20 و pH=7……………………44
شکل4-8: ولتامتری چرخه­ای الکترود SAPO/CPE  25% در محلول  در محلولmM  10 پتاسیم فری سیانید وM 1/0  KCl در سرعت اسکن­های بالاتر از 350 میلی ولت برثانیه و شکل الحاقی در سرعت اسکن­های کمتر از 350 در همان شرایط………………………………………………………………………………………..45
شکل 4-9 :شکل  برحسب  برای ولتامتری چرخه­ای اکسیداسیون K4Fe(CN)6 در صفحه­ی  (b)SAPO/CPE و (a)  CPE با سرعت اسکن­های مختلف……………………………………………………………..47
شکل 4-10: ولتامتری چرخه­ای الکترود (a)CPE و الکترود SAPO/CPE 25% (b) بعد از قرارگرفتن در محلول 1/0  مولار نیکل کلراید و به همراه ولتامتری چرخه­ای قبل از گذاشتن الکترودها در محلول 1/0 مولار نیکل کلراید…………………………………………………………………………………………………………………….48
شکل4-11: مقایسه­ی شدت جریان پیک آندی الکترودهای اصلاح شده در حضور و در غیاب متانول…..49
شکل 4-12: a چرخه ولتامتری Ni/NSAPO/CPE  در سرعت اسکن­های  کمتر از 300میلی­ولت بر ثانیه در محلول  1/0  مولار  NaOH  . b شکل Ep  بر حسب Log υ  برای  پیک­های آندی (a)  و کاتدی (b) ولتامتری چرخه­ای نمایش داده شده در قسمت a . c  وابستگی جریان­های پیک­های آندی و کاتدی  به سرعت اسکن در سرعت اسکن­های کمتر(5 تا 75 میلی­ولت بر ثانیه).  d شکل  جریان­های پیک­های آندی و کاتدی بر حسب 2/1υ  برای سرعت اسکن­های بالاتر از  75 میلی­ولت بر ثانیه………………………………….50
شکل 4-13: ولتامتری چرخه­ای  Ni/NSAPO/CPE  در محلول NaOH 1/0 مولار الف در حضور  متانول 01/0مولار و   ب غیاب متانول….…………………………..…………………………………….54
شکل 4-14: (a)   شکل Ipa بر حسب υ و (b)  Ipa برحسب 2/1υ  داده­های استخراج شده ولتامتری چرخه­­ای الکترود Ni-SAPO/CPE در حضور متانول با غلظت 005/0 در محلول 1/0  مولار NaOH در سرعت اسکن­های مختلف. ©  تغییرات log(Ipa) بر حسب log υو (d)  شکل تغییرات 2/1υ /Ipa  برحسب …υ..56
شکل 4-15: تغییرات نرخ  Ipa/Ipc  برای Ni-SAPO/CPE نسبت به سرعت اسکن در محلول NaOH 1/0 مولار  ▲در غیاب متانول ■ در حضور متانول با غلظت 005/0 مولار…………………………………………….58
شکل 4-16: منحنی تافل و منحنی الحاقی ولتامتری چرخه­ای الکترود اصلاحی در محلول NaOH  1/0 مولار و در حضور متانول با غلظت 005/0 مولار با سرعت اسکن mV/s 20………………………………………58
شکل4-17:  a  کرنوآمپرومتری دوپله­ای الکترود Ni/NSAPO/CPE  در محلول NaOH 1/0  مولار باغلظتهای  0، 0015/0، 003/0، 01/0 مولار متانول (گام­های پتانسیل به ترتیب 7/0 و 3/0 بر حسب Ag/AgCl/KCl )   b  منحنی جریان بر حسب زمان در I غیاب متانول و II حضور متانول c  وابستگی  به  از روی داده­های کرنوآمپرومتریc  وابستگی جریان به  از داده­های کرنوآمپرومتریd  وابستگی نرمال شده­ی شکلc  به غلظت متانول………………………………………………………………………………………..59
شکل 4-18: نمایش رفتار نمایی کرنوآمپرومتری الکترود  Ni/NSAPO/CPE در مقابل الکترود  CPE….61
شکل 4-19: تصویرSEM  a) الکترود خمیر کربن b) الکترود خمیرکربن اصلاح شده با SAPO %25w/w  c) الکترود خمیرکربن اصلاح شده با SAPO بعد از لود شدن در محلول نیکل کلراید 1/0مولار…………….63
فهرست جداول
 
جدول 1-1: مثال­هایی از زئولیت­های کوچک، متوسط، بزرگ حفره……………………………………………………….. 5
جدول 2-1: کشف­ها و پیشرفت­های اصلی در زمینه­ مواد غربال کننده­ی مولکولی در طی این دوره                   23
جدول 2-2: سیر تکامل زئولیت­های آلومینوسیلیکاتی از دهه­ی 1950 تا دهه­ی 1970………………. 24
جدول 4-1: جدول محاسبات ks  از طریق معادله (5) و شکل b4 برای mV 200<E∆…………………. 52
جدول 4-2: محاسبه مقدار kcat……………………………………………………………………………………………………………………. 60
جدول 4-3: مقایسه­ی ثابت نرخ کاتالیزوری (kcat) برخی از الکترودهای اصلاحی در اکسیداسیون متانول.61
مروری کلی بر غربال مولکولی سیلیکوآلومینوفسفات[1]
نزدیک به شش دهه است که پیشرفت­های تاریخی در مورد غربال­های مولکولی صورت گرفته است. این پیشرفت­ها از غربال­مولکولی­های آلومینوسیلیکاتی شروع شده و به مواد آمورف سیلیسی با تخلخل­های میکرونی[2]، پلی­مورف­­های[3] بر پایه­­ی آلومینوفسفات، کامپوزیت­های متالوسیلیکات و متالوفسفات، چارچوب­های هشت وجهی – چهاروجهی، غربال­های مولکولی متخلخل مزو و اخیراً به چارچوب­های آلی فلزی  هیبریدی رسیده است ]1[.
امروزه سنتز کاتالیزورهای زئولیتی با اندازه نانو مورد توجه محققان می­باشد ]4-2[. سیلیکوآلومینو فسفات (SAPO) ازجمله زئولیت­هایی است که به خاطر خاصیت کاتالیزور اسیدی، می­تواند به عنوان غشا یا جاذب در فرایندهای جذب سطحی[4] یا الگویی برای تولید سایر مواد نانو ساختار یا برای مواد پتروشیمی به کار گرفته شود ]7-5[. سیلیکوآلومینوفسفات­ها محتوی یک شبکه بلوری متخلخل سه بعدی است که در چارچوب ساختاری  SiO2 , AlO2و PO2  یا PO4 به شکل واحدهایی در گوشه های چهارضلعی قرار دارند. به عنوان منبع فسفر می­توان از ترکیبات گوناگونی شامل فسفریک اسید، فسفات آلی مانند تری­اتیل­فسفات و آلومینوفسفات استفاده نمود. در واحدهای چهارضلعی AlO2 از ترکیبات گوناگونی شامل آلومینیوم آلکوکسایدهایی از جمله آلومینیوم­ایزوپروپوکسید، آلومینیو­فسفات­ها، آلومینیوهیدروکسید، سدیم­آلومینیت و سودوبوهمیت می­توان استفاده نمود. به عنوان منبع سیلیسیم، در واحدهای چهارضلعیSiO2 ، نیز از ترکیبات گوناگونی شامل پودرهای سیلیکا و سیلیکون آلکوکساید مانند تترااتیل ارتوسیلیکات می­توان استفاده کرد ]8[.
زئولیت­ها، با خاصیت غربال مولکولی دارای کاربرد گسترده­ای در صنایع ازجمله کاتالیزور، جاذب و مبادله­گرهای یونی می­باشند. آن­ها کریستال­های آلومینوسیلیکاته با شبکه­ی سه بعدی هستند که دارای حفراتی در ابعاد مولکولی می­باشند. این حفرات از حلقه­های متصل به هم در یک شبکه از اکسیژن و اتم‌های چهاروجهی مانند Si و یا Al (شکل 1-1) تشکیل شده­اند. Si و Al در شبکه زئولیتی می­توانند با دیگر عناصر جایگزین گردد]1[. از این عناصر می­توان به آهن، ژرمانیوم  و نیکل اشاره کرد. هر اتم چهاروجهی به چهار اتم اکسیژن متصل می­گردد و هر اتم اکسیژن نیز به دو اتم چهار وجهی متصل می­شود. با افزودن عناصر واسطه مواردی نظیر مساحت، BET و خاصیت اسیدی تغییر می­کند.
برای اتم­های چهار وجهی چهار ظرفیتی مانند سیلیسیم و ژرمانیوم ساختار شبکه بطور طبیعی باردار خواهد شد و این در حالی است که اتم­های چهار وجهی سه ظرفیتی مانند آلومینیوم احتیاج به کاتیون­های متعادل کننده مانند Na+ یا H+ دارند. این کاتیون­های عضو شبکه زئولیتی نیستند و در کانال­ها جایگزین می­شوند] 9[. حضور عناصر دیگر به جای عناصر Si و Al در ساختار یک زئولیت بر روی اندازه حفرات، آب دوستی یا آب گریزی، مقاومت شیمیایی در برابر اسید و دیگر خواص زئولیت اثر خواهد گذاشت ]10[.
شکل 1-1 واحدهای TO4 در غربال مولکولی­های زئولیتی و آلومینوفسفاتی ‍
 
زئولیت­ها براساس ساختار شبکه خود با یک کد شناسه سه حرفی که توسط انجمن بین­المللی زئولیت [5](IZA) مشخص شده است، شناخته می­شوند. تمام زئولیت­ها دارای حفراتی هستند که دارای قطر مشخصی می­باشند. این قطر از 3 انگستروم (زئولیت­های کوچک حفره) تا بزرگتر از 1 نانومتر (زئولیت­های بزرگ حفره) متغیر است ]11[. زئولیت­های متوسط حفره دارای 10 عضو در حلقه (7/0 تا  8/0 نانومتر) و فوق بزرگ دارای 14 عضو در حلقه می­باشند. مثال­هایی از این موارد در شکل 1-2 و جدول 1-1 ارائه شده است.
بعضی از زئولیت­ها دارای سیستم کانال­های 3 بعدی می­باشد که این سیستم در تمام جهات محورهای بلوری گسترده شده است. درحالی که دیگر زئولیت­ها دارای سیستم کانال­های یک یا دو بعدی هستند.

« دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته صنایعمتن کامل پایان نامه مقطع کارشناسی ارشد رشته : شیمی »
 

update your browser!