وبلاگ

توضیح وبلاگ من

پایان نامه درباره هوش عاطفی؛هوش هیجانی و مزیت رقابتی

داوینگ (1997) متذکر می شود که افراد ، شکل دهنده عواطف و یادگیری در چارچوب سازمانی هستند به علاوه وی اظهار می کند : ریشه تمایل و اشتیاق به عاطفه به افزایش ناپایداری و تغییر بافتی سازمان باز می گردد.او می گوید : تحول سازمانی غالباً منوط به تضادهای هیجانی یا تفسیری (برداشتی) است.نمونه های معمول هوش هیجانی بر مبنای تحول به تعداد بی شمار در رابطه با مدیریت تحول و کار تیمی ذکر شده اند .

ثبت ارزش هوش هیجانی از جانب سرشناسان و ناموران کسب و کار به این امر کمک کرده است (اشکان ، 1378)

کوپر (1997) از نیک ژنوئیک (رهبر تیم اجرایی شرکت فورد موتور) نقل می کند :

 

برای دانلود متن کامل پایان نامه ها اینجا کلیک کنید

 
1398/07/22
مدیر سایت

پایان نامه درمورد هوش معنوی//پیش فرضهای هوش معنوی

ایمونز[3] تلاش کرد معنویت را بر اساس تعریف گاردنر از هوش، در چارچوب هوش مطرح نماید. وی معتقد  بود معنویت می تواند شکلی از هوش تلقی شود زیرا قادر به پیشبینی عملکرد و سازگاری فرد (مثلاً سلامتی بیشتر) بوده و همچنین می تواند قابلیت هایی را مطرح کند که افراد را قادر سازد تا به حل مسائل پرداخته و به اهدافشان دسترسی پیدا کنند. در حالی که گاردنر، ایمونز را مورد انتقاد قرار می دهد و معتقد است که باید از جنبه های عقلانی، حل مسئله و پردازش اطلاعات جدا کرد (امرم[4]، 2005).

می توان علت مخالفت بعضی از محققان همانند گاردنر در مورد این مسئله که هوش معنوی متضمن انگیزش، تمایل ، اخلاق و شخصیت است را به نگاه شناخت گرایانه آنان از هوش نسبت داد (نازل[5]، 2004). وگان بعضی از خصوصیات معنویت را چنین عنوان کرده است:

بالاترین سطح رشد در زمینه های مختلف شناختی، اخلاقی، هیجانی و بین فردی را در بر می گیرد.
یکی از حوزه های رشدی مجزا می باشد.
بیشتر به عنوان نگرش مطرح است(مانند گشودگی نسبت به عشق).
شامل تجربه های اوج می شود.
به طور کلی معنویت [6]  به سفر زندگی در کشف معنا و مفهومی شخصی اشاره دارد و اصطلاحی است برگرفته از کلمه لاتین برای نفس و تنفس کردن و نشان

 

برای دانلود متن کامل پایان نامه ها اینجا کلیک کنید

دهنده اصل پویا و زنده ی موجود در هستی یعنی حس حفظ کردن زندگی می باشد. با این تعریف روح چیزی است که زندگی می دهد یا به موجود جان می بخشد. در لغت نامه دهخدا معنویت به معنای معنوی بودن است ومعنوی منسوب به”معنی” در مقابل لفظ و نیز “باطنی و روحانی” در مقابل “مادی و صوری” است. به دیگر سخن، معنویت یعنی معنایی که فقط توسط قلب شناخته می شود.  معنویت در فرهنگ آکسفورد به معنی در ارتباط بودن با روح یا کیفیت های روانی برتر، متعلق بودن یا در ارتباط بودن با چیزها یا موضوعات مقدس، ایستادن یا تکیه دادن به دیگران، دین داری، درستکاری، پرهیزکاری، و به لحاظ روحی خوب بودن، داشتن تمایلات یا غرایز معنوی و … آمده است.

الکینز و همکاران(1988)، چهار پیش فرض در خصوص هوش معنوی مطرح کرده اند:

مؤلفه ی تحت عنوان بعد معنوی وجود دارد.
معنویت یک پدیده انسانی است و به صورت قابلیت و ظرفیت، در همه مردم وجود دارد.

 
1398/07/22
مدیر سایت

دانلود پایان نامه ارشد:بررسی تنوع ژنتیکی ژنوتیپ‌های فلفل -Capsicum annuum.L-با استفاده از صفات مورفولوژیکی در شهرستان ارومیه

زمستان 1393

تکه هایی از متن به عنوان نمونه :

مطالب                                                                                         صفحه

چکیده 1

فصل اول: مقدمه وکلیات 2

اهداف پژوهش 4

فرضیه 4

1-1- تاریخچه و منشأ فلفل 4

1-2- مشخصات گیاه‌شناسی 5

1-3- ارزش غذایی و دارویی 7

1-4-اهداف و برنامه‌های اصلاحی 8

1-5- اهمیت اقتصادی و سطح زیر کشت 8

1-6- تولید فلفل در جهان 8

1-7- تولید فلفل در ایران 9

2-1- بررسی اهمیت تنوع ژنتیکی 12

2-1-1- نشانگرهای مورفولوژیکی (ظاهری) 14

2-1-2- نشانگرهای سیتوژنتیکی 15

2-1-3- نشانگرهای مولکولی 15

2-2- تجزیه به مؤلفه‌های اصلی 15

2-3- تجزیه خوشه‌ای 16

2-4- انواع روش‌های تجزیه خوشه‌ای 17

2-4-1- روش مراتبی 17

2-4-2- روش تجزیه‌ای 17

2-5- ضریب همبستگی 18

2-6- تجزیه علّیت 18

فصل دوم: بررسی و مرور منابع 20

2-8- بررسی تنوع ژنتیکی فلفل در ایران 27

فصل سوم: مواد و روش‌ها 29

3-1- موقعیت و مشخصات محل اجرای آزمایش 29

3-2- مواد گیاهی فلفل 29

3-3- آماده‌سازی زمین و مواد آزمایشی 31

ج). خزانه و نشاکاری: 31

د). زمان نشاکاری: 31

ه). نحوه کاشت نشا: 31

3-4- عملیات زراعی 31

3-5- صفات مورفولوژیکی 32

3-7- روش اندازه‌گیری 33

3-6- صفات فیزیولوژیکی: 35

3-8- تجزیه و تحلیل‌های آماری 37

تجزیه واریانس و مقایسه میانگین 37

اجزای واریانس و ضرایب تغییرات 37

3-9- تجزیه به مؤلفه‌های اصلی 37

3-10- تجزیه خوشه‌ای 38

3-11- تجزیه علّیت ژنتیکی 38

فصل چهارم: نتایج و بحث 39

4-1-1- خصوصیات عادت رشد و عادت شاخه‌دهی 41

4-1-2- خصوصیات برگ، ساقه و موقعیت جام گل 41

4-2- نتایج تجزیه واریانس و مقایسه میانگین 43

 

برای دانلود متن کامل پایان نامه ها اینجا کلیک کنید

4-3- آماره‌های توصیفی صفات مورد بررسی 49

4-4- وراثت‌پذیری 50

4-5- همبستگی 52

4-6- تجزیه به مؤلفه‌های اصلی 56

4-7- تجزیه خوشه‌ای 57

4-8- رگرسیون گام به گام 60

4-9- تجزیه علّیت ژنتیکی 60

4-5- نتیجه‌گیری کلی 63

4-11- پیشنهادات 65

4-12- منابع 66

 

 

فهرست جداول

جدول 1-1- سطح زیر کشت، میزان تولید و متوسط عملکرد فلفل 9

جدول 3-1- کد و نام ژنوتیپ­های فلفل 30

جدول 3-2- صفات اندازه‌گیری شده و علامات اختصاری آن‌ها 32

جدول 3-3- توصیف نامه صفات بررسی‌شده 36

جدول 4 –1- صفات توصیفی فلفل 42

جدول 4-2- تجزیه واریانس ویژگی‌های مورفولوژیکی 45

جدول 4-3- مقایسه میانگین ویژگی‌های مورفولوژیکی 46

جدول 4-4- مقادیر آماره­های توصیفی صفات 50

جدول 4-5- برآورد اجزای واریانس، ضریب تنوع و توارث­پذیری 52

جدول 4-6- ضرایب همبستگی بین صفات 55

جدول 4-7- نتایج مربوط به مؤلفه‌های اصلی 57

جدول 4-10- نتایج تجزیه علیت با استفاده از رگرسیون گام ‌به ‌گام 62

 

فهرست شکل‌ها

شکل 1-1- میزان تولید. 10

نمودار 1-1- سطح زیر کشت. 10

نمودار 1-2- عملکرد فلفل . 11

نمودار 1-3- میزان تولید فلفل. 11

شکل 4-1- نمودار دندوگرام. 60

شکل 4-2- شکل شماتیک تجزیه علیت. 63

 

   

 

 


چکیده

فلفل با نام علمی (L. Capsicum annuum) Pepper، از جمله مهم‌ترین سبزیجات به شمار می‌رود که علاوه بر مصارف غذایی، دارای مصارف دارویی نیز می­باشد. آزمایش حاضر به منظور بررسی تنوع مورفولوژیکی و تعیین خصوصیات 42 ژنوتیپ فلفل با استفاده از صفات مورفولوژیکی در مرکز تحقیقات آذربایجان غربی انجام شد. تجزیه واریانس داده­ها بر اساس طرح لاتیس مستطیل 6*7 در 6 تکرار با استفاده از نرم‌افزارهای SAS، SPSS و MINITAB انجام گرفت. نتایج حاصل از تجزیه واریانس داده­ها برای ویژگی‌های مورفولوژیکی نشان داد که بین ژنوتیپ­های مورد مطالعه، در سطح احتمال 1% اختلاف‏‏‏ معنی­داری وجود داشت. برخی از صفات مانند طول ساقه، ضخامت دیواره میوه، فتوسنتز و ارتفاع گیاه دارای ضریب تغییرات بالا در بین ژنوتیپ‌ها می‌باشند. بیش­ترین میزان وراثت­پذیری مربوط به طول میوه، عرض میوه، ضخامت دیواره میوه، طول دم میوه، وزن تر و خشک میوه و عملکرد بود و کم­ترین مقدار وراثت­پذیری به فتوسنتز خالص، ارتفاع گیاه و پهنای چتر میوه اختصاص داشت. در بررسی همبستگی صفات کمی، بیش‌ترین همبستگی بین وزن تر میوه با وزن خشک میوه (**958/r=)، و وزن تر میوه با ضخامت دیواره میوه **834/r=)، به دست آمد. بر اساس نتایج تجزیه به مؤلفه‌های اصلی، حدود 95 درصد از واریانس کل در بین ژنوتیپ­ها توسط 10 مؤلفه اول توجیه شد. گروه‌بندی صفات مورفولوژیک 42 ژنوتیپ فلفل، با استفاده از تجزیه خوشه‌ای نشان داد نمودار دندوگرام به 3 خوشه و هر خوشه به 3 زیر خوشه تقسیم شده است. ژنوتیپ­های ارومیه، لردگان و اورفای ترکیه در تجزیه خوشه­ای دارای عملکرد بیشتری نسبت به بقیه ژنوتیپ­ها بودند. نتایج تجزیه علیت ویژگی‌های مورفولوژیکی نشان داد که وزن خشک تأثیر مستقیم و مثبت بالایی در عملکرد دارد. به طور کلی نتایج بدست آمده از این پژوهش بیانگر وجود اختلاف و تنوع بین ژنوتیپ­های مورد ارزیابی از لحاظ ویژگی‌های مورد بررسی بود که کار گزینش ژنوتیپهای برتر از این طریق را بهبود می‌بخشد. این امر بر قابل‌دسترس بودن این منابع ژنتیکی برای برنامه‌های اصلاحی آینده، گروه‌‌بندی و تفکیک ژنوتیپ‌های فلفل نیز، کمک می­نماید.

کلمات کلیدی: تنوع ژنتیکی، صفات مورفولوژیکی، عملکرد، فلفل، همبستگی.

 

 


 

 

 

 

 

 

فصل اول 

مقدمه و کلیات
 

 

مقدمه وکلیات
فلفل یک گیاه با ارزش از خانواده Solanaceae است که تنوع وسیعی از نظر شکل میوه و تندی دارد و بر اساس شرایط آب و هوایی ممکن است یک ساله یا چند ساله باشد یعنی در صورت وجود سرما به صورت گیاه یک ساله رشد می­کند (بکینقام و سیمور[1]، 1984). فلفل در بیشتر کشورهای دنیا کشت می‌شود و میزان مصرف آن برای استفاده‎های ادویه‎ای و به عنوان سبزی از سال 199۴ تا به امروز بیش از 21% افزایش داشته است (بوسلند و وتاوا[2]، 1999).

اهمیت این گیاه بر اساس خاصیت اشتهاآور، هضم غذا، مقدار کاروتن و به ویژه ویتامین ث آن است. مقدار ویتامین ث در میوه‌های نارس 60 تا 70 و در رسیده بین 120 تا 140 میلی­گرم در 100 گرم میوه تازه است، کاروتن و ویتامین ث این گیاه در تنظیم فشارخون موثرند. نیاز بدن انسان به ویتامین ث یک نیاز ضروری می‌باشد و نیاز ویتامین ث انسان بالغ، روزانه 45 تا 80 میلی‌گرم می‌باشد و حدود 60 درصد این ویتامین از طریق مصرف سبزی و میوه تأمین می‌گردد (پیوست، 1388).

تعیین میزان تنوع ژنتیکی موجود در ژنوتیپ، گام اساسی و مهمی در انتخاب صحیح والدین برای ادامه برنامه­های اصلاحی در نسل­های بعدی خواهد بود. در بیشتر مواقع لازم است قبل از انتخاب برای صفت خاصی، آن را به اجزاء دیگری تقسیم نمود و این اجزاء از نظر نحوه توارث پذیری مورد تجزیه و تحلیل قرار گیرند. از آنجا که همواره عملکرد یکی از مهم‌ترین اهداف اصلاحی است، تشخیص اینکه کدام متغیر، بیش‌ترین عامل مؤثر بر تنوع عملکرد ارقام مختلف است، بدون شک کار برنامه‌های اصلاحی و انتخاب نتایج را آسان تر خواهد ساخت (اسکوئن و براوون[3]، 1991).

تنوع ژنتیکی در بحث اصلاح گیاهان حائز اهمیت است و لازمه بروز هر نوع تغییر در ساختار ژنتیکی گیاهان، وجود تنوع، اطلاع داشتن از سطح و نوع تنوع موجود در ژرم پلاسم است تا بتوان از این تنوع، با توجه به اهداف اصلاحی مورد نظر بهره برد (وجدانی[4]، 1993).

در زمینه بررسی تنوع ژنتیکی، نشانگرهای مورفولوژیکی از این نظر که هزینه انجام پایین دارند و نیاز به تکنیک‎های مولکولی یا بیوشیمیایی خاصی ندارند، مورد توجه هستند و کمک شایانی به تحقیقات اصلاحی می‎کنند (فارسی و ذولعلی[5]، 2003). تحقیقات متعددی برای ارزیابی تنوع ژنتیکی با استفاده از صفات مورفولوژیکی انجام شده است (گلتا [6]و همکاران، 2005).

تنوع ژنتیکی، تنوع قابل توارث درون و بین جمعیت‌های موجودات زنده را بیان می‌کند (براوون[7]، 1983). انتخاب خصوصیات مطلوب در گیاهان و بهبود آن‌ها برای صفات مورد نظر مستلزم وجود تنوع ژنتیکی کافی درون جمعیت‌ها و یا بین آن‌ها است. از طرفی استفاده از تنوع ژنتیکی درون یک جمعیت می‌تواند به عنوان راهکاری مناسب برای مقابله با آسیب‌پذیری ژنتیکی در گیاهان به کار رود، بنابراین، حفظ و یا ایجاد تنوع ژنتیکی برای رفاه حال و آینده‌ی انسان ضروری است (کاننبرگ فالک[8]، 1995). معمولاً تنوع ژنتیکی گیاهان در زمان و مکان تغییر می‌کند (اسکوئن و براوون،1991).

تنوع ژنتیکی در گیاهان زراعی پیش‌نیاز برنامه‌های اصلاح نباتات و از اجزای مهم پایداری نظام­های بیولوژیکی می‌باشد (سینگ و لبانا[9] ، 1990). آگاهی از تنوع ژنتیکی در گونه­های گیاهی برای انتخاب والدین در راستای حصول هیبریدهای مناسب و پیش‌بینی بنیه هیبریدها به ویژه در گیاهانی که هیبرید آن‌ها ارزش تجاری دارد، مهم است (محمدی و پرسانا ، 2003). ارزیابی تنوع ژنتیکی و اطلاع از شباهت­های ژنتیکی بین ژنوتیپ‌ها باعث سازمان‌دهی موثر مجموعه­های ژرم پلاسمی و افزایش بهره وری از آن‌ها در راستای بهبود ژنتیکی گیاهان می‌گردد (جلتا و همکاران ، 2005(.

تا همین اواخر ایجاد محصولات بومی، یک ترکیب ضروری و پویای تنوع زیستی کشاورزی بودند که تنها به عنوان منبع صفاتی که می‌تواند در برنامه های علمی اصلاحی و بهبود بهره وری ارقام جدید مورد استفاده قرار گیرند ارزشمند شمرده می شدند. مقایسه نشانگرهای مولکولی، همانند ریخت‌شناسی گل و میوه در فلفل ساده‌ترین روش برای بررسی و کشف ژنوتیپ‌ها و تشخیص تنوع ژنتیکی است. هرچند آنالیز با نشانگرهای مولکولی همانند دی ان آ به وسیله بزرگ بودن تعداد و عدم تأثیر از شرایط محیطی، قابلیت تولید مجدد و بالا سودمند­تر می­باشد بنابراین هدف از تجزیه مورفولوژیکی برای تعیین شباهت بین ژنوتیپ­ها می‌باشد (بالستر و ویسنت[10]، 1998). به همین منظور نشانگرهای مولکولی در کامل کردن خصوصیات مورفولوژیکی برای تعیین تنوع ژنتیکی قابل‌استفاده می‌باشند. همچنین با دسترس داشتن به مراکز تنوع و تغییرات ژنتیکی، برای بهبود و اصلاح محصولات اغلب قابل ‌استفاده می‌باشند (گیلبرت[11] و همکاران، 1999).

حفظ ژرم­پلاسم گیاهان از اولین وظایف هر دستگاه تحقیقاتی است. ذخایر ارزشمند ژنتیکی می‌تواند به عنوان ابزار مهمی در اصلاح نباتات مورد استفاده اصلاح­گران قرار گیرد. علاوه بر حفظ ژرم­پلاسم داخلی، استفاده و معرفی ژرم­پلاسم خارجی می‌تواند برای کارهای اصلاحی و استفاده از تنوع ژنتیکی موجود، در آینده مورد استفاده قرار گرفته و حائز اهمیت باشد.

تنوع آب و هوایی بالا در ایران، کشورمان را به عنوان یکی از مراکز مهم انتشار و پراکنش بسیاری از گونه­های گیاهی قرار داده است. بنابراین برنامه­ریزی صحیح به منظور شناسایی دقیق ذخایر توارثی ملی و طبقه­بندی آن‌ها بایستی از جمله اولویت­های اساسی باشد که در سیاست­های کشاورزی کشور در نظر گرفته می­شود.

از آن جا که افزایش عملکرد همواره از مهم­ترین اهداف برنامه­های اصلاحی در فلفل است، تجزیه علیت عملکرد و تعیین مقادیر معنی­دار واریانس اجزاء عملکرد مشخص خواهد کرد که کدام روش اصلاحی می‌تواند موفقیت­آمیز باشد. تشخیص این­که کدام متغیر، مهم­ترین عامل مؤثر بر عملکرد ارقام مختلف است، بدون شک کار پروسه­های اصلاحی و گزینش نتایج را آسان­تر خواهد ساخت.

اهداف پژوهش
بررسی تنوع ژنتیکی و روابط ژنتیکی در بین ژنوتیپ‌های فلفل­های بومی ایران
تجزیه علیت عملکرد، تعیین ضرایب همبستگی و تعیین اثرات مستقیم و غیرمستقیم صفات بر عملکرد
بررسی کارایی خصوصیات مورفولوژیکی در متمایز کردن ژنوتیپ‌های فلفل
فرضیه
بین صفات مورفولوژیکی و عملکرد اختلاف وجود ندارد.
تنوع ژنتیکی بین ژنوتیپ‌های مختلف فلفل وجود ندارد.
بین صفات اندازه‌گیری شده هیچ رابطه‌ای وجود ندارد.
خصوصیات مورفولوژیکی قادر به متمایز کردن ژنوتیپ‌ها و بررسی تنوع ژنتیکی نیستند.
1-1- تاریخچه و منشأ فلفل
فلفل گیاهی بومی مکزیک و آمریکای مرکزی است. تاریخ مصرف این گیاه به 7 هزار سال پیش از میلاد مسیح برمی­گردد، زمانی که سرخ‌پوستان آمریکایی ساکن پرو و مکزیک به عنوان ادویه از آن استفاده می­کردند. تا اینکه طی قرون 15 و 16 میلادی، کاشفان آمریکایی این سبزی خوش‌رنگ و نگار را به اروپا و از آنجا به آسیا و آفریقا آوردند و این‌گونه فلفل وارد برنامه غذایی شد (طباطبایی، 1376). در حال حاضر کشت این گیاه در مناطق گرمسیر و نیمه گرمسیر در فضای آزاد و در اروپا اغلب در گلخانه و یا زیر پوشش انجام می‌شود. تا قرن نوزدهم پرورش انواع تند آن رواج داشت، ولی در دهه‌های اخیر کشت انواع شیرین آن که فاقد کاپسایسین[12] است رواج یافته است (پیوست، 1381).

1-2- مشخصات گیاه‌شناسی
یک طبقه‌بندی مطلوب گیاه‌شناسی گونه­ها برای مدیریت مناسب ژنوتیپ­ها ضروری می‌باشد. یک شناسایی نادرست گونه­های نگهداری شده در بانک ژن می‌تواند منجر به از دست دادن ازدیاد و حفاظت ناکافی واریته­ها برای تحویل گم شدگی مواد ژنتیکی به مؤسسات دیگر شده و در نتیجه موجب اتلاف وقت و منابع مالی می‌شود (گوتور [13]و همکاران، 2008).

فلفل شیرین با نام انگلیسی (Green papper)، گیاهی است از خانواده بادمجانیان و جنس کپسیکوم و گونه خوراکی آن Capsicum annum می‌باشد (طباطبایی، 1376). جنس‌های فلفل به واسطه صفات مورفولوژیکی یا صفات وابسته شناسایی شده اند. مورفولوژیکی گل شامل رنگ گل، فشردگی کاسه­گل و تعداد گل در هر محور گل، اغلب برای توصیف رده‌بندی گل در فلفل استفاده می‌شود (اینسه [14]و همکاران، 2009؛ موسکون [15]و همکاران، 2007؛ پیکرسجیل[16]، 1971). فلفل گیاهی است یک ساله که برگ­های آن به صورت ساده، منفرد، بیضی شکل و متناوب روی ساقه قرار دارند. برگ فلفل از نظر اندازه، رنگ و شکل متنوع است. بیشتر برگ­ها می­توانند نرم و بدون کرک و در مواردی کرک دار باشند. تعداد روزنه در برگی که در نور خورشید رشد کرده است 120 – 190 روزنه در هر سانتی‌متر مربع و برای برگی که در سایه رشد کرده 35-70 روزنه در هر سانتی­متر مربع می­باشد (اسکاج[17]، 1972). بوته فلفل دارای ساقه محکم ایستاده می­باشد و ارتفاع آن در شرایط معمول مزرعه به 30-50 سانتی­متر می­رسد. ساقه اصلی بعد از پیدایش اولین غنچه گل به دو شاخه و هر شاخه نیز به نوبه خود، بعد از ظهور غنچه گل به دو شاخه تقسیم می‌شود. بر همین اساس بوته آن شاخه‌های فرعی زیادی تولید می­کند که به گیاه شکل چتری می­دهد (مبلی و پیراسته، 1377). ریشه­های فلفل­ها فیبری می­باشد و رشد رویشی، اعم از صاف، زبر و برگ‌های ساده بیشتر به صورت فشرده و بیشتر راست تر از گوجه‌فرنگی‌ها هستند (بوسلند و تاوا، 2012).

ریشه‌های این گیاه بیشتر سطحی هستند و به طور معمول وزن ریشه 10 درصد وزن کل گیاه می­باشد. در گیاهان جوان وزن ریشه نسبت به قسمت هوایی بیشتر است و این نسبت با افزایش سن کاهش می­یابد (بوسلند و تاوا، 2000). ریشه این گیاه به انتقال نشاء بسیار حساس می­باشد و وقتی نشاء از جعبه کاشت منتقل می‌شود و یا با یک لایه سخت در مزرعه روبرو می‌شود ریشه آن آسیب می­بیند (دلی و تیسن[18]، 1969).

گل‌ها در این گیاه هرمافرودیت و مضربی از 5 می­باشند که دارای 5-7 گلبرگ با طول 10-20 میلی­متر و 10-15 میلی­متر قطر گل می­باشند. گل­ها به صورت منفرد در زاویه شاخه­ها رویش می­کنند (بوسلند و گنزالز[19]، 1994). معمولاً بیش از 100 گل در هر گیاه رشد می­کند (بوسلند، 2000). فلفل گیاهی است خود گرده‌افشان (الارد[20]، 1960) که البته مقداری هم قابلیت دگرگرده افشانی دارد (حدود15%) و در دگرگرده افشانی حشرات نقش مهم­تری نسبت به باد دارند (تانکسلی و الیواس[21]، 1984). در اکثر ارقام گل­ها به صورت افقی یا آویزان قرار می­گیرند، بنابراین گرده می‌تواند بر روی سطح کلاله بچسبد. احتمالاً در مزرعه حشرات به انتقال گرده و افزایش میوه بستن کمک می­کنند (شکاری، 1388).

گل فلفل در روز گل دهی، از ابتدای سپیده دم شروع به باز شدن می­کند و بیشتر گل­های جدید در ساعت 8 باز می­شوند. باز شدن بساک­ها عموما با یک تاخیر 1 تا 2 ساعته بعد از باز شدن گل­ها صورت می­گیرد ولی در برخی ارقام گزارش شده است که این وضع تا حدود 4 ساعت بعد از باز شدن گل به تاخیر می­افتد (شکاری، 1388).

میوه فلفل از نظر گیاه‌شناسی سته است و به رنگ­های مختلف دیده می‌شود که دارای تعداد زیادی بذر است (پیوست، 1388). گاهی روی یک بوته تمام انواع میوه با حفره­های مختلف دیده می‌شود. شکل میوه بسیار متغیر است و به صورت کشیده، نوک تیز، گرد و کروی، مخروطی و یا استوانه­ای مشاهده می­گردند. رنگ میوه نارس سبز است و در طی مراحل رسیدن تغییر رنگ داده و در مرحله نهایی رسیدن به رنگ­های زرد، قرمز و یا قهوه­ای ظاهر می‌شود (دانشور، 1379). میوه در دمای زیر 16 و بالای30 درجه سانتی‌گراد تشکیل نمی­شود. وقتی دمای شب بیش از 24 درجه باشد گل­ها ریزش دارند. مناسب­ترین دما برای بالا بردن میزان گل دهی 16 تا 21 درجه می­باشد. طول دم میوه در رقم­های مختلف فرق می­کند و از 10-20 میلی­متر متفاوت می­باشد. میوه‌های کوچک معمولا دم میوه بلندتری دارند (بوسلند و تاوا، 1999). تشکیل میوه در فلفل با گوجه فرنگی و کدو متفاوت است. به این معنی که در آن‌ها در زمان باز شدن گل شکل تخمدان، شواهد اندکی از شکل نهایی میوه را نشان می­دهد. شکل خوشه­ای تخمدان در زمان گلدهی ممکن است باعث تشکیل یک میوه تخم‌مرغی یا کشیده در فلفل شود. بنابراین تغییرات در شکل سلول و طرح و اندازه تقسیم سلولی باعث تأثیر عمیقی بر روی اندازه نهایی میوه می‌شود (شکاری، 1388).

فل

1 – Beckingham and Seymour

2 – Bosland and Votava

3 – Schoen and brown

4 – Vojdani

5 – Farsi and Zolali

6 – Geleta

1 – Brown

2 – Kannenberg and Falk

3 – Sing and Labana

5 – Ballester and Vicente

[11] – Gilbert

[12] – Capsaicin

[13] – Gotor

[14] – Ince

[15] – Moscone

[16] – Pickersgill

[17] – Schoch

[18] – Deli, J. and Tiessen

 
1398/07/22
مدیر سایت

پایان نامه آموزش ضمن خدمت//مراحل و فرآیندهای آموزش

شناسایی نیازهای یادگیری افراد وگروه ها
طراحی و تولید مواد آموزشی برای یادگیرنده
ج –  ارائه فرصت های یادگیری , منابع و پشتیبانی

اکتساب و تخصیص منابع برای اجرای طرح های آموزش و بهسازی
ارائه فرصت های یادگیری و پشتیبانی لازم برای توانمند کردن افراد و گروه ها در رسیدن به اهدافشان
د –  ارزشیابی اثربخشی آموزش

ارزشیابی اثربخشی آموزش و بهسازی
ارزشیابی موفقیت فرد و گروه بر اساس اهداف تعیین شده
ارزشیابی موفقیت با توجه به گواهی عمومی
ه –  پشتیبانی آموزش و بهسازی

تلاش ومشارکت برای پیشرفت آموزش و بهسازی
ارائه خدمات لازم برای پشتیبانی عملیات آموزش و بهسازی ( عباس زادگان , 1379, 14)
 

 

2-1-12-2  مدل :     [1]   T. D. L. B

هیا

 

برای دانلود متن کامل پایان نامه ها اینجا کلیک کنید

ت هادی آموزش و بهسازی انگلستان ( 1992 ) که یک سازمان سیاست گذار دولتی در زمینه های فعالیت های آموزش و بهسازی است ، مدل استانداردی برای آموزش و بهسازی کارکنان ارائه نموده است .در این مدل مراحل چرخه آموزش وبهسازی بیانگر حوزه های فرعی و فعالیت های هر یک شایستگی و مهارتی است که آموزش T. D. L. B مطرح شده که به زعم حوزه های وآموزش گران باید از آن برخوردار باشند .

این الگو یک مرحله مهم را به مراحل اصلی آموزش و بهسازی افزوده است . این مرحله پشتیبانی های اطلاعاتی وعملیاتی است که نقش بسیار مهمی در پیشرفت روال کار و سطح آموزش و بهسازی در سازمان دارد .

 
1398/07/22
مدیر سایت

پایان نامه : مدلسازی ریاضی سینتیک هسته گذاری و رشد نانو ذرات پلیمری در فرایند پلیمریزاسیون امولسیونی با استفاده از نتایج هدایت سنجی

استاد (اساتید) راهنما:
دکتر  فرشاد فرشچی تبریزی
دکتر  حسین آتشی کاشی
 
 
استاد مشاور:
دکتر  حسین عابدینی
 
این پایان نامه از حمایت مالی معاونت پژوهشی دانشگاه سیستان و بلوچستان و ستاد ویژه توسعه فناوری نانو بهره مند شده است
 
تیر 1389
برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود
(در فایل دانلودی نام نویسنده موجود است)
تکه هایی از متن پایان نامه به عنوان نمونه :
(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
 
چکیده
بخش عمده ای از خواص نهایی محصول در پلیمریزاسیون امولسیونی توسط توزیع اندازه ذرّات تعیین می‌­گردد. در این پروژه، یک مدل دقیق بر مبنای معادلات موازنه جمعیتی ( مدل صفر- یک) که دربرگیرندۀ پدیده­های هسته زایی و رشد ذرّه می‌­باشد برای پیش­بینی توزیع اندازه ذرّات انتخاب گردیده است. برای حل معادلات موازنه جمعیتی از روش حجم محدود استفاده شده است. در این مطالعه، اثر پارامتر غلظت اولیه ماده فعال سطحی روی درصد تبدیل و توزیع اندازه ذرّات بصورت تجربی و به کمک شبیه­سازی بررسی گردیده است. بر اساس نتایج حاصله، با کاهش مقدار ماده فعال سطحی، اندازه ذرّات افزایش می­‌یابد. در کلیّه موارد فوق، نتایج شبیه­سازی و تجربی تطابق مطلوبی دارند. در این پروژه، روابط مناسبی برای محاسبۀ تجربی CMC با استفاده از داده­های آزمایشگاهی به­صورت y=A Ln(x) + B در دو دمای 25 و 60 درجه سانتیگراد ارائه شد، و نیز در دمای 60 درجه سانتیگراد فرمول تجربی برای تلفیق دو الکترولیت Na2CO3 و KPS که در پلیمریزاسیون امولسیونی نانو ذرات پلی­بوتادین به­ترتیب به­عنوان بافر و شروع­کننده استفاده می­شود با روش حداقل مربعات به صورت z=A(x)m(y)n به­دست آمد که در تمام موارد فوق ضرایب به­گونه­ای به­دست آورده شد که با داده­های آزمایشگاهی بهترین تطابق را داشته باشد.
 همچنین، هدایت اولیه الکتریکی سیستم بر حسب غلظت یونها، در حضور الکترولیت­های موجود در پلیمریزاسیون امولسیونی بوتادین در دو دمای 25 و 60 درجۀ سانتیگراد با چهار روش به­دست آمده است. ابتدا با روش تجربی و با استفاده از داده­های آزمایشگاهی فرمولی به­صورت y=A(x) برای هدایت الکترولیت­های فوق در دو دمای 25 و 60 درجه سانتیگراد به­دست آمده است. سپس دو روش ارائه شده در مقالات بررسی شده است، و در نهایت روشی ابداعی برای محاسبه هدایت الکتریکی محلول­های فوق ذکر گردیده و درصد خطای هرکدام از روش­ها به صورت جداولی آورده شده است. در نهایت هدایت الکتریکی سیستم پلیمریزاسیون امولسیونی بوتادین بدون خضور مونومر و نیز به صورت Online در حضور واکنش بدست آمده است. صحّت این روابط از طریق داده­های آزمایشگاهی مورد تایید قرار گرفت.
کلمات کلیدی: پلیمریزاسیون امولسیونی، بوتادین، توزیع اندازه ذرّات، موازنه جمعیتی، مدلسازی


 
فهرست مطالب
فصل اول.. 1
مروری بر فرایندهای پلیمریزاسیون.. 1
1-1- مقدمه. 2
1-2- تقسیم بندی پلیمرها بر اساس مکانیسم پلیمریزاسیون. 3
پلیمریزاسیونهای زنجیرهای.. 5
پلیمریزاسیونهای مرحلهای.. 5
فقط مونومرهایی وارد واکنش میشوند که دارای مراکز فعّال (مانند رادیکال آزاد و یا یون) باشند. 5
هردو مونومری که دارای دو عامل فعّال مختلف در دو سرخود باشند قابلیت وارد شدن در واکنش را دارند. 5
غلظت مونومر به طور یکنواخت در طول واکنش کاهش مییابد. 5
مونومرها بسرعت در مراحل اولیّۀ واکنش از بین میروند. 5
پلیمرهایی با وزن مولکولی بالا به سرعت به وجود میآیند. 5
وزن مولکولی زنجیرههای پلیمری همگی با هم به آهستگی در طول زمان افزایش مییابد. 5
سرعت واکنش بسیار زیاد میباشد. 5
سرعت واکنش آهسته و کند است. 5
از ابتدای واکنش، زنجیرههایی با درجه تبدیل بالا بدست میآیند. 5
برای بهدست آوردن زنجیرههایی با درجه تبدیل بالا میبایستی واکنش را تا بیش از90% ادامه داد. 5
واکنش در چند مرحله، شروع، انتشار و اختتام انجام میپذیرد. 5
واکنش فقط در یک مرحله صورت میپذیرد. 5
فقط پلیمرهای خطی یا مولکولهایی با انشعابات کم را تولید میکند. 5
مولکولهایی با ساختار متفاوت، از مولکولهای خطی سادۀ بدون شاخه تا شبکههای حجیم با اتصالات عرضی زیاد به دست میدهد. 5
1-2-1- واکنشهای پلیمریزاسیون رادیکال آزاد. 5
1-2-1-1- آغاز. 6
1-2-1-2- رشد (انتشار) 6
1-2-1-3- پایان. 6
1-2-1-4- انتقال زنجیر. 7
1-2-2- طبقه بندی روشها و یا سیستمهای پلیمریزاسیون بر اساس محیط واکنش… 7
1-2-2-1- پلیمریزاسیون همگن.. 8
1-2-2-1-1- روش پلیمریزاسیون تودهای (جرمی) (Bulk Polymerization) 8
1-2-2-1-2- روش پلیمریزاسیون محلولی (Solution Polymerization) 9
1-2-2-2- پلیمریزاسیون ناهمگن.. 10
1-2-2-2-1- روش پلیمریزاسیون تعلیقی (Suspension Polymerization) 10
1-2-2-2-2- روش پلیمریزاسیون امولسیونی (Emulsion Polymerization) 10
روش پلیمریزاسیون.. 14
مزایا 14
 

برای دانلود متن کامل پایان نامه ها اینجا کلیک کنید

/>معایب.. 14
پلیمریزاسیون. 14
تودهای.. 14
فرآیند ناپیوسته. 14
سادگی فرآیند، انعطاف پذیری، هزینۀ پایین جداسازی.. 14
حرارت زایی واکنش، توزیع وزن مولکولی پهن، افزایش شدید ویسکوزیته و در نتیجه مشکل اختلاط و انتقال حرارت در حین واکنش    14
فرآیند پیوسته. 14
قابل کنترل بودن واکنش توسط درجه حرارت، قابل کنترل بودن وزن مولکولی، خواص محصولات و در نتیجه هزینه جداسازی پایین   14
درجه تبدیل پایین، جدایی مونومر از پلیمر، نیاز به درجه حرارت بالا و در برخی مواقع نیاز به فشار بالا، چسبندگی پلیمربه دیواره راکتور 14
پلیمریزاسیون محلولی.. 14
نسبت به سیستم تودهای ویسکوزیتۀ کمتر و در نتیجه اختلاط و انتقال حرارت بهتر، قابل کنترل بودن واکنش توسط کنترل دما، قابل مصرف بودن مستقیم محلول واکنش، چسبندگی کم پلیمر به بدنه راکتور 14
هزینۀ استفاده از حلّال، آلودگی محیط به علت وجود حلّال، هزینۀ خشکسازی و جدا سازی، مشکل وجود پدیده انتقال رادیکال  14
پلیمریزاسیون تعلیقی.. 14
قابل کنترل بودن کیفیت محصول و واکنش توسط کنترل دما، قابل مصرف بودن مستقیم دانههای خشک جامد و در نتیجه هزینه پایین جداسازی، ویسکوزیته کم و درنتیجه انتقال حرارت مناسب.. 14
عدم امکان استفاده از فرآیندهای پیوسته، نیاز به وجود همزن و افزودنیهای خاص، چسبندگی ذرات پلیمری به بدنه راکتور 14
پلیمریزاسیون امولسیونی.. 14
قابل کنترل بودن واکنش توسط دما، سرعت بالای واکنش، ویسکوزیته کمتر (نسبت به سیستم های محلولی و تودهای)، انتقال حرارت مناسب، قابل مصرف بودن لانکس تولیدی.. 14
نیاز به غلظت بالای امولسیفایر، نیاز به پایدارسازی ذرات، چسبندگی ذرات به بدنه راکتور 14
1-2-3- اهمیت پلیمریزاسیون امولسیونی.. 14
1-2-4- مکانیسم پلیمریزاسیون امولسیونی.. 15
1-2-5- مراحل پلیمریزاسیون امولسیونی.. 18
1-2-6- مکانیسم ایجاد ذرّه 22
1-2-6-1- هسته‌زایی مایسلی.. 22
1-2-6-2- هسته‌زایی همگن.. 23
1-2-6-3- هسته‌زایی قطرهای.. 23
1-2-7- پلیمریزاسیون امولسیونی بوتادین.. 24
1-2-8- معرفی مونومر بوتادین.. 24
1-2-9- مواد مورد استفاده در پلیمریزاسیون امولسیونی بوتادین.. 27
1-2-9-1- امولسیفایر. 27
1-2-9-2- شروع کننده. 28
1-2-9-3- بافر. 29
1-2-10- مروری بر کارهای انجام شده در زمینۀ شبیه سازی وکنترل توزیع اندازه ذرّات.. 29
فصل دوم. 35
سینتیک پلیمریزاسیون امولسیونی.. 35
2-1- مقدمه. 36
2-2- رخدادهای فاز پیوسته. 36
2-3- رخدادهای فاز قطرات مونومری.. 36
2-4- رخدادهای فاز ذرات پلیمری.. 37
2-5- مایسلهای متورّم شده با مونومر. 38
2-6- مدلسازی.. 42
2- 6-1- واکنشهای آغازین.. 42
2-6-2- الیگومرهای فاز آبی.. 43
2-6-3- هسته‌زایی.. 44
2-6-4- موازنۀ منومرها 45
2-6-5- موازنه ماده فعال سطحی.. 47
2-6-5-1- مدل صفر – یک… 48
2-6-5-2- مدل شبه توده. 49
2- 6-6- معادلات مدل شبه توده برای موازنه جمعیتی ذرات پلیمری.. 49
2-6-6-1- تعداد متوسط رادیکالها در ذّرات.. 50
2-6-6-2- رشد ذرات پلیمری.. 51
2-6-6-3- ورود الیگومرها به ذرّات.. 51
2-6-6-4- دفع الیگومرها از ذرّات.. 52
2-6-6-5- اختتام در داخل ذرّات.. 52
2-6-7- معادلات مدل صفر-یک برای موازنۀ جمعیتی ذرّات پلیمری.. 52
2-6-8- حل عددی معادلات موازنه جمعیتی.. 55
2-6-8-1- المان محدود (Finite Elements) 56
2-6-8-2- حجم/تفاضل محدود. 57
فصل سوم. 59
محاسبۀ CMC با استفاده از نتایج هدایت سنجی.. 59
3-1- مقدمه. 60
3-2- آزمایش… 61
3-3- تأثیرات الکترولیتها بر روی CMC در دمای 25ºC.. 62
3-4-1- تأثیر تک تک الکترولیتها بر روی CMC در دمای 60ºC.. 65
3-4-2- تأثیر تلفیق الکترولیتها بر روی CMC.. 68
فصل چهارم. 70
شبیهسازی امولسیونی پلیبوتادین و مقایسه با دادههای تجربی.. 70
4-1- مقدمه. 71
4-2- مدلسازی.. 73
4-2-1- مقیاس مدلسازی.. 73
4-2-2- مراحل مدلسازی در واکنشها و فرآیندهای پلیمریزاسیون. 74
4-2-3- روشهای انتخاب مدل در واکنشها و فرآیندهای پلیمریزاسیون. 75
4-3- مدلسازی سینتیکی پلیمریزاسیون امولسیونی بوتادین.. 75
4-4- فرضیّات در نظر گرفته شده در طرح سینتیکی ارائه شده برای پلیمریزاسیون امولسیونی بوتادین.. 76
4-5- حل معادلات حاصل شده در مدلسازی سینتیکی پلیمریزاسیون امولسیونی بوتادین.. 77
4-5-1- گسسته سازی معادلات دیفرانسیلی جزیی موازنه جمعیتی.. 78
4-6- پارامترهای استفاده شده در مدلسازی سینتیکی پلیمریزاسیون امولسیونی بوتادین.. 79
4-7- مقایسۀ نتایج حاصل از مدلسازی سینتیکی با دادههای آزمایشگاهی.. 81
4-7-1- شرح دستگاه و تجهیزات.. 81
4-7-2- روش آزمایش… 82
4-7-3- خوراک هر آزمایش… 84
4-7-4- پلیمریزاسیون با سدیم دودسیل سولفات.. 84
فصل پنجم. 103
پیشبینی هدایت در طول فرایند پلیمریزاسیون.. 103
5-1- مقدمه. 104
5-2- آزمایش… 105
5-3- پیشبینی هدایت الکتریکی محلولها بدون واکنش شیمیایی.. 106
5-3-1 پیشبینی هدایت الکتریکی محلولهای SDS در غلظتهای مختلفی از الکترولیتهای Na2CO3 و KPS در دمای 25ºC و 60ºC   106
5-3-2 پیشبینی هدایت الکتریکی محلولهای SDS در غلظتهای مختلفی از تلفیق الکترولیتهای Na2CO3 و KPS در دمای 60ºC   135
5-4- پیشبینی هدایت الکتریکی واکنش پلیمریزاسیون امولسیونی نانو ذرّات پلیبوتادین (به صورت Online) 146
فصل ششم. 148
نتیجه گیری و پیشنهادات.. 148
6-1 نتیجهگیری.. 149
6-2- پیشنهادات.. 150
مراجع.. 152
پیوستها 158
محاسبه CMC در حضور 5/0 گرم Na2CO3 در محیط با تیتراسیون SDS در دمای 25°C.. 159
محاسبه CMC در حضور 75/0 گرم KPS در محیط با تیتراسیون SDS در دمای 25°C.. 160
محاسبه CMC در حضور 5/0 گرم Na2CO3 در محیط با تیتراسیون SDS در دمای 60°C.. 162
محاسبه CMC در حضور 1 گرمKPS در محیط با تیتراسیون SDS در دمای 60°C.. 164
فهرست جدول­ها
جدول 1- 1. اختلافات موجود بین پلیمریزاسیونهای زنجیره ای و مرحله ای.. 5
جدول 1- 2. مقایسه روشهای پلیمریزاسیون 14
جدول 1- 3. خواص فیزیکی و ترمودینامیکی بوتادین. 26
جدول 1- 4. خوراکهای استفاده شده در پلیمریزاسیون امولسیون بوتادین.. 27
جدول 1- 5. لیست مقالات انجام گرفته در دهه گذشته براساس مدلهای موازنه جمعیتی . 32
جدول 2- 1. رویدادهای سینتیکی داخل فاز پیوسته (آب) 40
جدول 2- 2. رویداد های سینتیکی داخل فاز ذره پلیمر. 41
جدول 2- 3. معادلات سینتیکی پلیمریزاسیون امولسیونی 42
جدول 3- 1. ضرایب به دست آمده برای فرمول (3- 1). 63
جدول 3- 2. مقادیر CMC سدیم دو دسیل سولفات (SDS) برای غلظتهای مختلف الکترویتهای اضافه شده در 25ºC   64
جدول 3- 3. ضرایب به دست آمده برای فرمول (3- 2). 66
جدول 3- 4. مقادیر CMC سدیم دو دسیل سولفات (SDS) برای غلظتهای مختلف الکترویت اضافه شده در دمای60°C   67
جدول 3- 5. اطلاعات کاملی از غلظتهای مختلف تلفیق دو الکترولیت Na2CO3 و KPS، CMC تجربی، CMC به دست آمده از فرمول ارائه شده، و میزان خطای حاصله از این فرمول برای هر کدام از غلظتهای فوق. 69
جدول 4- 1. طرح سینتیکی در نظر گرفته شده برای پلیمریزاسیون امولسیونی بوتادین.. 76
جدول 4- 2. پارامتر­های استفاده شده درمدلسازی سینتیکی پلیمریزاسیون امولسیونی بوتادین.. 79
جدول 4- 3. پارامترهای بدست آمده با استفاده از مدلسازی سینتیکی پلیمریزاسیون امولسیونی بوتادین.. 80
جدول 4- 4. داده­ها برای سورفکتانت سدیم دو دسیل سولفات.. 80
جدول 4- 5. مقادیر مواد استفاده شده در آزمایشات پلیمریزاسیون امولسیونی بوتادین.. 84
جدول 5- 1. مقادیر هدایت اولیه الکترولیتهایKPS  و  Na2CO3 در دمای الف) 25ºC ب) 60ºCکه دستگاه هدایت­سنج نشان می­دهد. 110
جدول 5- 2. ضرایب معادله (5- 7) در دمای الف) 25ºC ب) 60ºC.. 112
جدول 5- 3. ضرایب هدایت برآورد شده در روش دوّم در الف)ºC 25 ب) 60ºC.. 114
جدول 5- 4 .ضرایب هدایت Gi و مقادیر هدایت معادل هر یک از گونه­های یونی (ºλi) برآورد شده در الف) ºC25 ب)60ºC   115
جدول 5- 5. خطای نسبی هدایت اولیه (σo) غلظتهای مختلف الکترولیتهای Na2CO3 و KPS در هر روش الف) 25ºC ب) 60ºC   116
جدول 5- 6. خطای نسبی (σcalc) غلظتهای مختلف الکترولیتهای Na2CO3 و KPS درمحلولهای SDS در هر روش در الف) 25ºC ب) 60ºC   120
جدول 5- 7. خطای نسبی σcalc غلظتهای مختلف الکترولیت با استفاده از مقدارهای دقیق هدایت اولیه نشان داده شده توسط سیستم هدایت­سنج در الف) 25ºC ب) 60ºC.. 131
جدول 5- 8. مقادیر هدایت اولیه، σo، غلظتهای مختلفی از تلفیق الکترولیتهای  Na2CO3و KPS در دمای 60ºC   135
جدول 5- 9. مقایسهای بین اعداد پیش­بینی شده در روش ارائه شده در این تز، با روش دوّم و سوّم برای هدایت اولیه تلفیق دو الکترولیت در دمای 60ºC.. 137
جدول 5- 10. اعداد پیش-بینی شده با روش ارائه شده در این تز برای هدایت اولیّۀ تلفیق دو الکترولیت در دمای 60ºC   139
جدول 5- 11. خطای نسبی (σcalc) محلولهای SDS با غلظتهای مختلفی از تلفیق دو الکترولیت در هر روش. 140
جدول 5- 12. خطای نسبی σcalc غلظتهای مختلف تلفیق دو الکترولیت، با استفاده از مقدارهای دقیق هدایت اولیّۀ نشان داده شده توسط سیستم هدایت­سنج در دمای 60ºC.. 144
 
 
 
 
 
فهرست شکل­ها
شکل 1- 1. نمایش ساده شده یک سیستم پلیمریزاسیون امولسیونی.. 18
شکل 1- 2. پلیمریزاسیون امولسیونی در حین مرحله I 19
شکل 1- 3. پلیمریزاسیون امولسیونی در حین مرحله II 20
شکل 1- 4. پلیمریزاسیون امولسیونی در حین مرحله III 21
شکل 1- 5. رفتارهای مختلف سرعت مشاهده شده در پلیمریزاسیون امولسیونی. 21
شکل 1- 6. مراحل پلیمریزاسیون امولسیونی در مکانیسم هسته‌زایی هموژن. 23
شکل 2- 1. حوادث مربوط به هسته گذاری ذرات در فاز پیوسته 39
شکل 2- 2. حوادث مرتبط با فاز پیوسته و فاز ذرّه پلیمری 39
شکل 2- 3. نحوه تبدیل انواع ذرّات به یکدیگر در مدل صفر – یک… 53
شکل 3- 1. اندازه گیری­های هدایت-سنجی برای محلولهای SDS در حضور الف) KPS ب)  Na2CO3در دمای 25ºC   62
شکل 3- 2. تأثیر الکترولیتهای اضافه شده بر روی غلظت بحرانی مایسل (CMC) SDS در دمای 25ºC.. 63
شکل 3- 3. اندازه گیریهای هدایت-سنجی برای محلولهای SDS در حضور الف) KPS ب)  Na2CO3در دمای 60ºC   65
شکل 3- 4. تأثیر الکترولیت اضافه شده بر روی غلظت بحرانی مایسل (CMC) SDS در دمای 60°C.. 66
شکل 4- 1. تغییرات کارایی شروع کننده با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 85
شکل 4- 2. تغییرات سرعت هسته­زایی همگنی با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 86
شکل 4- 3. تغییرات غلظت سورفکتانت آزاد در فاز پیوسته با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 86
شکل 4- 4. تغییرات غلظت مایسل در فاز پیوسته با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 87
شکل 4- 5. تغییرات هسته زایی مایسلی با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 87
شکل 4- 6. تغییرات هسته­زایی کلی با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 88
شکل 4- 7. تغییرات تعداد ذرات پلیمری دارای رادیکال پلیمریک به ازای واحد حجم فاز محلول ( ) با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 89
شکل 4- 8. تغییرات تعداد ذرات پلیمری بدون رادیکال به ازای واحد حجم فاز محلول ( ) با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 89
شکل 4- 9. تغییرات تعداد ذرات پلیمری دارای رادیکال مونومریک به ازای واحد حجم فاز محلول ( ) با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 90
شکل 4- 10. تغییرات تعداد متوسط رادیکالها به ازای ذرات ( ) با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 90
شکل 4- 11. تغییرات تعداد کل ذرات به ازای واحد حجم فاز پیوسته  با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 91
شکل 4- 12. تغییرات سطح کل ذرات پلیمری با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 91
شکل 4- 13. تغییرات حجم کل ذرات پلیمری به ازای حجم فاز پیوسته با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 92
شکل 4- 14. تغییرات ضریب نفوذ مونومر داخل ذرات پلیمری با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 93
شکل 4- 15. تغییرات ضریب سرعت انتشار نفوذی داخل ذرات پلیمری با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 93
شکل 4- 16. تغییرات غلظت مونومر داخل ذرات پلیمری با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 94
شکل 4- 17. تغییرات کسر حجمی پلیمر داخل ذرات پلیمری با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 95
شکل 4- 18. تغییرات غلظت مونومر داخل فاز پیوسته با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 95
شکل 4- 19. تغییرات حجم قطرات مونومری به ازای حجم فاز پیوسته با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 96
شکل 4- 20. تغییرات غلظت مونومربا زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 97
شکل 4- 21. تغییرات درجه تبدیل با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر، . 97
شکل 4- 22. تغییرات درجه تبدیل با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر، . 98
شکل 4- 23. تغییرات درجه تبدیل با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر، . 98
شکل 4- 24. تغییرات درجه تبدیل با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 99
شکل 4- 25. تغییرات سرعت پلیمریزاسیون با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 99
شکل 4- 26. تغییرات توزیع اندازه ذرات با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر . 100
شکل 4- 27. تغییرات توزیع اندازه ذرات با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر . 101
شکل 4- 28. تغییرات توزیع اندازه ذرات با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر . 101
شکل 4- 29. تغییرات توزیع اندازه ذرات با زمان در پلیمریزاسیون با سدیم دو دسیل سولفات برای بررسی اثر غلظت امولسیفایر. 102
شکل 5- 1. پیشبینی مدل و دادههای تجربی هدایت برای تیتراسیون آب مقطر با SDS در دمای الف)25ºC  ب) 60ºC   108
شکل 5- 2. جذب سورفکتانت روی ذرّات پلیمر و تجمع سورفکتانت برای تشکیل مایسل.. 109
شکل 5- 3. تغییرات هدایت اولیه الکترولیت با غلظت نمک در الف) 25ºC ب) 60°C.. 113
شکل 5- 4. یکی از بهترین شکلها با حداقل خطای برآورد شده با کلیۀ روشها برای الکترولیتهای KPS و Na2CO3 در دو دمای الف) 25ºC ب) 60ºC.. 129
شکل 5- 5. یکی از بهترین شکلها با حداقل خطای برآورد شده برای محلولهای SDS با غلظتهای مختلفی از الکترولیتهای KPS و Na2CO3 با استفاده از مقدارهای دقیق هدایت اولیه نشان داده شده توسط سیستم هدایتسنج در الف) 25ºC ب) 60ºC.. 134
شکل 5- 6. یکی از بهترین شکلها با حداقل خطای برآورد شده در هر روش برای محلولهای SDS با غلظتهای مختلفی از تلفیق الکترولیتهای KPS و Na2CO3 142
شکل 5- 7. یکی از بهترین شکلها با حداقل خطای برآورد شده با هدایت دقیق اولیه برای محلولهای SDS با غلظتهای مختلفی از الکترولیتهای KPS و Na2CO3 145
شکل 5- 8. پیش­بینی هدایت الکتریکی واکنش پلیمریزاسیون امولسیونی نانو ذرّات پلیبوتادین به صورت Online  146
 


 

علامت
 
نشانه
 
:
مساحت سطح کلی ذرات متورم
 
:
پارامتر برهم کنش بین پلیمر وحلّال
 
:
سطح احاطه شده با یک مولکول ماده فعّال سطحی
Cmc
:
غلظت بحرانی مایسل
 
:
ضریب نفوذ مونومر درفاز آبی
Eil®
:
ثابت سرعت داخل الیگومرهای فاز آبی نوعi وطول زنجیرl به ذرّات
Eli,Micelle
:
ثابت سرعت داخل الیگومرهای فاز آبی نوعi وطول زنجیرl به مایسلها
F(R,T)
:
تابع دانسیته ذرات
FR(D)
:
نیروی دافعه بین ذرّات به فاصله D
Iw
:
اکسید کننده در فاز آبی
Jcr
:
طول زنجیر بحرانی
Z
 
طولی که در آن الیگومر فعال سطحی می­شود.
KB
:
ثابت بولتزمن
Kd
:
ثابت سرعت واکنش تجزیۀ آغازگر
Kdw
:
ضریب تقسیم منومر بین فازآبی و قطرات مونومر
KdMj®
:
ثابت سرعت دفع رادیکالهای منومریک از ذرّات
Kpw
:
ضریب تقسیم مونومر بین فازآبی و ذرّات
Kpw,N
:
ثابت سرعت واکنش انتشاربا طولn  در فاز آبی
Kr
:
ثابت سرعت واکنش آغازین
Ks
:
ضریب تقسیم ماده فعال سطحی بین فازآبی و ذرات
Ksd
:
ضریب تقسیم ماده فعال سطحی بین فازآبی و قطرات منومر
Kt
:
ثابت سرعت واکنش اختتام در ذرات
Ktw
:
ثابت سرعت واکنش اختتام پلیمر در فاز آبی
Ktr
:
ثابت سرعت واکنش انتقال زنجیر پلیمر در ذرات
Ktrw
:
ثابت سرعت واکنش انتقال زنجیر پلیمرنوع در فاز آبی
L
:
طول موثر یک جزء از زنجیر ماده فعال سطحی
L
:
طول بسط داده شده از ماده فعال سطحی جذب شده در فاز آبی
[Mi]P
:
غلظت مونومر I در ذرات
[Mi]Psat
:
غلظت اشباع مونومر I در ذرّات
[Mi]W
:
غلظت مونومر I در فاز آبی
[Mi]Wsat
:
غلظت اشباع مونومر I در فاز آبی
M
:
مولهای مونومر در راکتور
Mw
:
وزن ملکولی مونومر
NA
:
عدد آووگادو
 
:
تعداد متوسط رادیکالهای فعال در ذرّات به شعاع R در زمان T
Nave(T)
:
تعداد متوسط رادیکالهای فعال در تمامی ذرات در زمان T
P0w
:
رادیکالهای منومری در فاز آبی
Plw
:
الیگومر با طول زنجیر L در فاز آبی
R
:
شعاع ذره
Rmicelle
:
شعاع مایسل
Rnuc
:
شعاع هسته زایی
Rs
:
شعاع ذرات متورم
Rw
:
رادیکال آغازگر
ST
:
تعداد کل مولهای ماده فعال سطحی در راکتور
Sw
:
غلظت ماده فعال سطحی آزاد
T
:
دمای راکتور
Vaq
:
حجم فاز آبی
Vd
:
حجم قطرات
Vp
:
حجم ذرات پلیمری غیر متورم
Vps
:
حجم ذرات متورم
 
:
دبی مولی خوراک ماده I
 
:
ویسکوزیته لاتکس
 
:
ویسکوزیته آب
 
:
دانسیته پلیمر
 
:
دانسیته مونومر I
Λi
 
هدایت معادل هر یک از گونه­های یونی
Zi
 
ظرفیت گونه­ها
Ci
 
غلظت مولی آبی
Σcalc
 
هدایت محلول­های SDS با الکترولیت(هدایت کل سیستم پس از تیتراسیون)
Σ0
 
هدایت اولیه محلول­ها با الکترولیت
– مقدمه

 
1398/07/22
مدیر سایت
 
مداحی های محرم